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The decay of a longitudinal discontinuity at a perforated baffle is considered, which 
occurs for example for normal incidence of a shock wave. With the passage of time, the 
linear dimensions representing the positions of the nonstationary inhomogeneities in the flow 
arising from the decomposition become much larger than the characteristic size of the perfo- 
rations (the coordinates of the shock waves and of the contact discontinuity, and also the 
extent of the rarefaction waves). One is then justified in assuming a steady-state flow 
through the perforations (for the mean parameters in the presence of turbulent pulsations) 
and that the nonstationary flow as a whole is self-modeling. Under these conditions, the 
solution (in particular the reflection and transmission coefficients for the shock wave) may 
be determined on a model with assumptions on the steady-state flow of the gas through the 
baffle. Results on this topic include particularly the experimental data of [1-5] and the 
theoretical approaches developed in [4-8]. However, the latter do not give a complete solu- 
tion. The topic is also related to experimental studies on nonstationary flow around ob- 
stacles in shock tubes [9] and to the decomposition of shock waves in channels with sudden 
changes in area. There is an extensive literature on this [10-18], which is partly used be- 
low. 

i. We direct the x axis of a rectangular xyz coordinate system along the normal to the 
baffle, which resembles the initial discontinuity in coinciding with the plane x = 0. Then 
we consider the flow as a whole (global analysis), and neglect the thickness of the baffle 
and the characteristic linear dimension d of the perforations. Finally, without loss of gen- 
erality, we assume that after the decomposition the gas flows through a perforation from 
left to right (in the positive direction of the x axis). For d<< IxI<<Dt, where t is time 
and D is the characteristic shock-wave speed, the flows to left and right of the baffle can 
be considered as uniform and stationary. We use subscripts minus and plus for the parame- 
ters of these flows, while subscript m is used for quantities averaged over the minimal cross 
sections of the holes. If p is pressure, p density, and i specific enthalpy (a 
known function of p and p), while u, v, and w are the x, y, and z components of the velocity 
vector V, V = ~u S ~-u2-~-w 2 and [~l =~+--~- for any parameter ~, then by virtue of the 
steady-state character of the flow through the baffle 

[9u] = 0 ,  [2i @ V"] :~-0, [p + 9u 2] = - - X ,  
[~)ucl = - - F ,  [puw] =----Z. 

( l . l )  

Here X, Y, and Z are the corresponding projections of the force F acting from the flow 
on unit area of the baffle. System (i.I) should be supplemented with expressions for the 
components of F as functions of the parameters of the flow and baffle or by other information 
equivalent to these expressions. In particular, for a sufficiently thick baffle, in which 
the length of the channels is large by comparison with the transverse dimensions, one natu- 
rally assumes as follows no matter what the values of v_ and w_: 

l~m == ~ == O, u~m == it,+ = O, (1.2) 

which replace the last two conditions in the previous system (in fact, these conditions can 
be used with (1.2) to determine Y and Z). Similarly, instead of specifying X it is often 
simpler and more convenient to assume some scheme for the flow of the gas through the baffle. 
This of course must be in conformity with the available theoretical and experimental evi- 
dence on such flows. For example, for subsonic flow to the left of the baffle one naturally 
assuraes [2-8, 12, 13, 16, 17] that the gas expansion, which is accompanied by a fall in pres- 
sure, is isentropic, i.e., 
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where s is the specific entropy or any function of this. 
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( 1 o 3 )  

Let E = Sm/S be the degree of compression in the perforation, which is equal to the ra- 
tio of the minimal cross-sectional area S m to the total area of the baffle S. As S m it will 
be more correct to take not the geometrical area but the effective value, which incorporates 
the difference of the flow coefficient from unity. Then (1.2) and (1.3) along with the fol- 
lowing relations consistent with (i.I) : 

VL ~pmu~ = 9 _ u - ,  2ira ~ u~  = 2i_ ~ (i. 4) 

and the equations of state i = i(p, p) and s = s(p, p) constitute a system of conditions re- 
lating the parameters to the left of the baffle and in the minimal cross section. 

We introduce the Mach number M = u/a, where ~ = a(p, p) is the speed of sound. For 
M m < ! the flow to the right of the baffle will also be subsonic (here we are considering 
that flow near the baffle, i.e., for IxI<<Ot; in a nonstationary wave structure, the gas 
speed can take any values to the left and right of the baffle). In this condition, which 
we call PI, it is unrealistic to assume expansion of the subsonic flow without detachment 
for x > O. Here it is more correct to use the scheme for detached flow (Bord shock [ii]), 
when there is a constant pressure p' = Pm to the right of the baffle. At this stage we as- 
sume that the channels in the perforation either narrow in the flow direction or have con- 
stant cross sections. In PI, the third equation of (i.i) written for the sections m and + 
takes the form 

p+ + p+u~ = p~ + ~p~u~,. ( 1 . 5 )  

Naturally, in this state the parameters appearing in (1.1)-(1.5) are found at the same 
time as the problem on the breakup is solved. We do not consider the order of the opera- 
tions and the methods of analysis, which are completely analogous to those described in [12, 
15, 17-19], and merely state that one then implements an xt diagram as shown in Fig. la. The 
double lines in Fig. 1 show the paths of the shock waves, while the broken lines represent 
the contact discontinuity (the trajectory of the baffle coincides with the t axis). Any of 
the shock waves can be replaced by a centered decompression wave. 

The limit in relation to P1 is a flow that is sonic in the channel [2-5, 7, 8, 16]; then 

Mm = t ,  (1.6) 

and the flow for x < 0 ceases to depend on the parameters to the right of the baffle, but 
(1.1)-(1.4) still applies. In such states, the Bord shock does not occur, and the condition 
for realization is the inequality 

P ' ~ P m "  (1.7) 

When (1.6) and (1.7) are satisfied, there are at least two states of flow to the right 
of the baffle. In one of these (called P2), the value of p' is dependent on the nonsta- 
tionary wave structure at x > O, which in this case is the same as that shown in Fig. la. 
This means t]hat the sonic jets emerging from the holes in the perforation by virtue of (1.7) 
initially accelerate, but in response to the stationary discontinuities (oblique and almost 
straight or closing [2]) together with the mixing form a uniform subsonic flow in the + sec- 
tion. We then have 

p + +  o+u~ = ~(p + Ou~),~ § (l - -  ~)p ' ,  (1.8) 
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and in the + section the solution providing a nondecreasing entropy has ~ < i. We must em- 
phasize that although the parameters with subscript m in (1.8) are shown by (1.6) to be 
known in this state, (1.8) accords with the meaning of P2 in giving only a relationship be- 
tween p', p+, p+, and u+ , without defining them unambiguously. These quantities are found 
by joint solution of (1.8) and the equations describing the wave struc{ure of Fig. la for 
x > 0. 

Along with P2, we examine P3, with shut-off shock-wave zones, where the flow at the baf- 
fle is independent of the wave structure to the right, in particular as regards p', p+, p+, 
and u+. 

Here the flow in the + section is supersonic, and the wave diagram is as shown in Fig. 
ib, and the wave (shock or centered) separating the regions + and 4 moves in the opposite 
sense to the supersonic flow, although it is carried by it to the right. As in Fig. la, the 
shock waves (double lines) in Fig. ib may be replaced by centered decompression waves in ap- 
propriate families. 

To describe the P3 state with these zones we have to make additional assumptions. In 
some studies [4] the assumption has been made of isentropic supersonic expansion: 

s+ = s~ (I. 9) 

However, appreciable errors arise from using this equation to describe a stationary super- 
sonic flow in a channel with sudden expansion, particularly in P'/PT~ = ~(e), since this is 
well known from experiment for this state. In that sense a more perfect model is that ob- 
tained for zero ejection coefficient in the theory of [20] for ejector nozzles. This model 
corresponds to (1.8) with 

P' =Pm (I.i0) 

and with M+ > 1; this relationship is a consequence of (1.8) and (i.i0) with M m = 1 and 
M+ > 1 and gives p'~m=~(e) that agrees exceptionally well with all the experimental data 
of which we are aware (~0.05) on sudden expansion of a sonic flow (see in particular [21]). 
As there are no such comparisons for e < 0.05, the P3 state will subsequently be described 
within the framework of (i.i0) and (1.9). In both cases the transition from P2 to P3 occurs 
when the secondary shock wave SS or the bundle of decompression waves from the characteris- 
tics of the second family, which separate zones + and 4 according to Fig. ib, begin to be 
carried off by the flow to the right. 

Let the shock wave SI be incident on the baffle at time t = 0, arriving from the left 
and being responsible for the discontinuity arising at that instant in the section x = 0. 
The intensity of SI may be characterized either by PI ~ p2/pl, or by the Mach number MSI 
DSI/al, where DSI is the velocity of SI and the subscripts i,... relate to the parameters 
in the corresponding regions; one then naturally expects successive realization of the PI, 
P2, and P3 states. On the basis of the conditions for transition from P1 to P2 and from P2 
to P3 one can show that the dependence on PI and MSI of parameters such as the total pres- 
sure p' and the intensities of the transmitted wave ST and the reflected wave SR, i.e., 
PT ~ Ps/p~ and PR ~ p_/p2, remain continuous. At the points of transition, there are only 
discontinuities in the slopes of the curves, which cannot always be seen on the scales of 
the figures. The proof of the continuity of these relationships on going from P2 to P3 is 
based, among other things, on the relations describing these states, together with either 
the conditions for a stationary step, which is a secondary SS wave at the instant of transi- 
tion, or on the continuity of the parameters at the left boundary of the decompression wave. 

Although the above sequence of states is quite natural, this does not mean that it will 
be realized under any conditions, in particular for all e. For example, according to the 
above analysis the transition from P2 to P3 for very small e is impossible for any PI" For 

= 1.4, the minimum value of e indicated by (1.9) for which this transition can occur is 
close to 0.008, as against 0.023 on the basis of (i.i0). For smaller e and any large PI one 
gets the P2 state with open zones in these models. Moreover, it can be shown that with the 
above scheme for flow to the left of the baffle and with any model for the flow to the right 
there must be some minimal value of e that sets a lower bound to the permeability of the baf- 
fle for which the P3 state can occur. In other problems, as in the decomposition involving 
the sudden bursting of diaphragms in minimal cross sections of the perforation, one gets a 
sequence of all three states for any s as the initial pressure ratio increases. 
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2. Before we give numerical results obtained from the above model and compare them 
with the experimental evidence, we note some possible generalizations of the analysis. 

Firstly, the analysis of section 1 is transferred comparatively easily to the case of 
perforations with expanding or contracting-expanding channels (in the flow direction). We 
do not give all the equaaions for this situation but merely enumerate the main points that 
must be considered in writing them. When weak shock waves do not occur, the modification of 
the P1 sch~ne amounts to the isentropic condition of (1.3) to emergence from the baffle on 
the assumption of undetached flow in the channels. Deviations from this scheme are to be 
expected only for channels with large angles of expansion, in which the retardation of the 
subsonic flow may result in detachment in the expanding parts. 

When the shock waves occur, which occurs here in the minimal cross sections, we ge t the 
P2 ~ state in a certain pressure range p' in the detachment zone, which is intermediate be- 
tween P1 and P2. This range in p' is defined by the conditions 

P(Me)P(M e, Re e) ~ p' ~ p(t), (2.1) 

where M e and Re e are the Mach and Reynolds numbers determined from the parameters at the ex- 
it from the channels, p(M) is the pressure found as a function of the Mach number, the total 
enthalpy ]_-~i_ q-V~/2 and s_, and P(M, Re) is the critical pressure ratio in the oblique 
shock wave, which is known from experiment as a function of its arguments. The dependence 
of P on Re is weak for a turbulent boundary layer. If the left-hand inequality is violated 
in (2.1), i.e., we have 

p '  < p(M~P(~g, R%), 

there is a transition to P2 and then to P3. Violation on the right inequality in (2ol) is 
equivalent to violating condition (1.6), i.e., transition to PI. If both inequalities are 
obeyed in (2.1), there are shock waves in the expanding part of each channel, and behind 
these (near the wall) there is a detachment zone, in which [22] p ~ p', and the pressure in 
the detachment section p(M), the Mach number M, p', and so on are related by 

p' = p(M)P(M, Re) ~ p(M~P(Me, ReO. (2.2) 

Subsequent calculation is performed as for P2, with the substitution of Pm, Pro, Um, and~ in 
(1.8) of values that satisfy (2.2). The transition from P2 ~ to P2 occurs continuously under 
violation of the left inequality in (2.1). 

Second]j, the flow to the left of the baffle is considered subsonic (M_ < i) for all the 
above states;, whereas in reality the opposite situation is possible, particularly for 
(I--8)<< I, , i.e., for a baffle that only slightly retards the flow. It is obvious, how- 
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ever, that the analysis of such states from one-dimensional flow models for the channels, if 
justified at all, is only for special baffles such as gratings consisting of elongated sharp- 
ended profiles. In the case of a baffle (screen) composed for example of wires, one more 
naturally uses all equations of (1.i) with 

X = ~ ( M - ,  Re_) (i --  e) p_u~ (2.3) 

and with analogous expressions for Y and Z with nonzero values for v_ and w_ in the incident 
flow. To a first approximation, the resistance coefficients Cx,... can then be taken from 
theoretical and experimental studies on supersonic flow around single elements of the baffle 
(for circular cylinders for a wire screen). As c falls, it becomes necessary to consider 
the interference between adjacent pairs of elements. The onset of interference (as ~ falls) 
can be established from these results on flow around the individual elements. The interac- 
tion between the elements results in increased X, with accentuation of the stationary head 
shocks formed on flow around each element, and ultimately to failure of the supersonic flow 
state. It is more complicated to examine the transition state, where the interference is 
important but the flow between elements is far from one-dimensional. Here one can produce 
various paradoxes by using models analogous to those developed for M_ < i. Here we would 
point out the possibility of several solutions, which in these conditions can occur for a 
channel with a sudden change of area and which vanish when one replaces the sudden change by 
a smooth one [13, 14]. For (i--8)<<i one is justified in using expressions of the type 
of (2.3) within the framework of (i.I) also for M- < 1. 

Finally, the above models can bereadilyincorporated into a scheme for nonstationary 
interaction of a shock wave of any orientation with a perforated baffle. It is particularly 
simple to describe the case of nonstationary interaction with regular reflections. 

3. In accordance with the models of part i, we wrote an algorithm for a computer and 
made calculations of the interaction of a shock wave with a perforated baffle. The channels 
were of constant cross section, while the gas was assumed perfect (with • = 1.4 if not other- 
wise stated). For that case, it is convenient to understand by s in (1.3) and (1.9) the en- 
tropy function p/p~; Figs. 2 and 3 show some results, where here and subsequently the cal- 
culated values are shown as solid and broken lines, the second corresponding to the parts of 
the curves for which the P3 state is obtained within the framework of (1.9). 

Figure 2a shows PT as a function of PI for various e (numbers on the curves). The tran- 
sition points are indicated by the arrows: P1 to P2 by filled arrows, P2 to P3 by open ar- 
rows for (1.9) and by half-filled ones for (I.I0). The range in PI from 1 to i0" is shown 
on a logarthmic scale. The initial parts of these curves are shown also on the usual scale 
in the upper part of the figure. Figures 2b and 3 show the reflected wave intensity PR and 
the relative pressure P' E p'/p= in semilogarithmic scales as functions of PI and ~. 

Figures 4 and 5 compare the calculations with the experimental data. In Fig. 4, the 
comparison is made with the results from [3, 4] for e = 0.5, these sources being indicated 
respectively by open and filled points, while results for e = 0.71 are compared with the ex- 
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The results of [3] for the reflected wave are not 
given, since according to the arguments of [3], which are confirmed in [4], the measurements 
of [3] overestimated the reflected-wave intensity. In the comparison with [2], the flow co- 
efficient was taken as 0.95, in accordance with the estimates of [2]. In other cases it was 
taken as one. The theoretical curves of [4] are not shown, although they are in good agree- 
ment with the experimental data from that source, for the following reasons. The theoreti- 
cal description of PI in [4] was based on experimental values for the resistance coefficients 
of perforated screens. The resulting curves hardly differ from the corresponding solid 
curves in Fig. 4, which should be considered as an additional confirmation of the scheme of 
section 1 for flow with Bord shock waves. In [4], a model was used for states with M m = i 
with the isentropic condition of (1.9), which was written in section i for the P3 state. For 

= 0.5, this model can be used only above PI = 2.74, when the second wave is carried away 
down the flow. Finally, for ~ = i, the scheme of section i for the flow to the left of a 
perforated baffle does not differ from that used in [4]. 

In the same way, Fig. 5 compares the calculations for ~ = 1.29 and two small values of 
E (numbers on the curves) with experimental data (points) and theoretical values (dot-dash 
lines) from [5]. Here MSI and MST are the Mach numbers respectively of the incident and 
transmitted waves. The initial rectilinear parts of the dot-dash corresponding to the ab- 
sence of shock in the channels were constructed in [5] on the assumption that (1.3) and 
(1.9) apply, i.e., within the framework of isentropic acceleration followed by retardation. 
In that case, in contrast to the model of section i, the baffle has no resistance. There- 
fore, PT = PI and PR = l, i.e., the incident wave SI passes through without attenuation and 
without reflection. Figure 4 shows that this is notso (in [5] there are no experimental 
points corresponding to this mode). We have been unable to establish what model was used in 
[5] for the shock-wave case. Nevertheless, it is clear that the dot-dash curves of Fig. 5 
deviate from the solid lines, and the advantage of the latter becomes more obvious as MSI or 
PI increases. It is meaningless to compare theoretical curves with experiments of [9] on 
flow around fairly large obstacles for reasons concerned with the methods. The main one of 
these is that the distances at which the measurements of [9] were performed were small in re- 
lation to the dimensions of the bodies or the distances between them (the larger of these 
quantities acts as the characteristic dimension of the perforation d). 

We are indebted to V. A~ Vostretsova for assistance. 
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